What’s Bugs Got to do With It

Every now and then someone will ask what I do here in the Entomology Department at the California Academy of Sciences. Sometimes I say, “just lookin’ at bugs” or I stare blankly at them, slowly back up, and then run away. But usually I relate it to working in a library, only instead of books the walls are stacked with row upon row, millions upon millions of preserved insects. Researchers from all over the world “check-out” or borrow certain groups of insects, specifically ones in their area of expertise, for identification and study.

But there are some peculiarities to working in an Entomology collection. Translation: things sometimes get a little weird.

On a typical day I might peer into my microscope and see something like this:

Assorted Homops smaller

“Someone identify me!”

These googley-eyed chaps are an assortment of insects in the order Homoptera. The so-called “true-bugs”, insects in this very large order suck up plant sap with a pointy beak-like mouth, and include such well known insects as cicadas and aphids, as well as the ones you see illustrated here, commonly known as leafhoppers and planthoppers.

See this little guy with the bristles on his hind leg?

Cicadellid smaller

That’s a leafhopper in the family Cicadellidae. If you’ve ever walked through grass on a spring day, you’ve likely seen these guys in action, doing what the do best: hoppin’! They are by far the most common Homopteran family I see under my microscope. Not only that, some of them have amazingly beautiful colors.

cicadellidae 1

Rhododendron Leafhopper (Graphocephala fennahi)

 

Cicadellidae 2

Red-banded Leafhopper (Graphocephala coccinea)

cicadellidae 3

Leafhopper (Versigonalia ruficauda)

Several years ago, Entomologists at the Academy began a project to map arthropod diversity on the Island of Madagascar in order to identify conservation hotspots there. Sounds straightforward, but it’s actually quite revolutionary! Until recently, insects were typically overlooked in conservation assessments, despite the fact that they make up the majority of life on the planet.

Biologists in Madagascar collect thousands of specimens that they then ship to us at the Academy. Big bags labeled “Coleoptera”, “Lepidoptera”, “Hymenoptera”, etc. brimming with vials of specimens preserved in alcohol come pouring into our lab. That’s where my job comes in, because I get to wrangle the miscellaneous Homopterans and sort them into smaller and more manageable groups that can then be shipped to taxonomists all over the world.

Here’s a bright pink specimen that belongs in the family Flatidae. They often come in shades of bright pink or yellow and, like their name implies, they are pretty flat.

flatidae micro

Colorful specimen in the Family Flatidae (Homoptera)

Once I pull out all the Flatidae specimens from the samples, I’ll be sending them off on a tropical vacation to Hawaii, where a man who just-so-happens to be a Flatidae specialist lives and works. In time he will hopefully identify them to species!

Here’s a nymph that is possibly in the Hemipteran family Pentatomidae. I’ve never come across anything like it in our Madagascar (or any), sample that I have looked at. It’s possible it could be a new species, but we won’t know until after we send it to a guy at the San Diego Natural History Museum.

mystery hemip vial

With over 1 million described species and counting, we rely on these taxonomists to look over the insects that have been collected and identify them. Maybe they are new species! Or maybe species that we already knew about, but maybe from a new location we didn’t previously know they existed.

Once all of this data is collected for insects (as well as for reptiles, amphibians, plants, and mammals), it can then be used to help conservationists propose locations for protected areas in Madagascar that will preserve the maximum number of species.

This kind of work is valuable, not just for Madagascar, but for the world. Although insects are easily overlooked, the overwhelming vastness of their numbers means that they fill countless niches in the environment and provide important ecological services. Some, like the role bees play in pollination, are well-known. Others, like the fact that we owe the existence of chocolate to a tiny little fly, may not be so well-known. But knowing it is vital, and we still have so much to learn about the biodiversity of the planet, from insects to lichens found up high in redwood trees.

That’s why museums like the Academy of Sciences are so important – not only do they house the records of life on the planet, but they also provide indispensable resources for the taxonomists who are able to tease apart and illuminate the tiny worlds all around us.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tigers in the Night

Like a psychedelic flutter of love, a unicorn picnic, or a traveling band of kitten actors, butterflies spread happiness wherever they go. But as far as insects in the order Lepidoptera go, butterflies are just the tip of a very big iceberg. And perhaps – dare I say it – what’s hidden underneath is even more amazing.

Lepidoperans – also known as butterflies and moths – are an extremely large and diverse group of insects, with nearly 180,000 described species. “Lepis” means “scale” in latin, and “pteron” means “wing”. At the microscopic level, it’s easy to see how they got those fancy names:

Boloria (Clossiana) euphrosyne

Pearl-bordered fritillary butterfly (Boloria euphrosyne), wing close-up. (Photo by Gilles San Martin)

Those scaley-looking things on this butterfly wing are, in fact, scales! More accurately, they are modified hairs, but we call them scales anyway, and lepidopterans are covered in them. These tiny structures overlap slightly like shingles on a very colorful house, and are what give butterflies and moths their diversity of colors and patterns.

sunset moth orange scales

Sunset Moth (Chrysiridia rhipheus), wing scales. (Photo by Macroscopic Solutions)

butterfly scales turquoise

Sunset Moth (Chrysiridia rhipheus), wing scales. (Photo by Macroscopic Solutions)

Many of these colors and patterns are familiar – like the striking orange and black of a monarch, or the iridescent blue of a morpho butterfly lilting through the rainforest. They are familiar because, for the most part, butterflies are up and about when we are.

Although some moths are active during the daytime, the majority of moths are hidden from our normal waking life. But wait until the twillight, or until the stars come out. Check your porch light, or better yet, grab a white sheet, a lamp, and a beer, and you can see the myriad moths that make up the underside of the Lepidoptera iceberg.

Argina argus 2

Mangina argus, subfamily Arctiinae, Nepal. (Photo by Rachel Diaz-Bastin)

Mangina argus, from Southeast Asia, is a particularly lovely member of the nightime set. This species has two noteworthy distinctions: 1) It may possibly have the funniest genus name ever. And 2) It has striking pink and silver markings reminiscent of a butterfly. Except that it isn’t. It’s a moth.

Moths make up roughly 80% of all known Lepidoptera (that’s almost 160,000 known species, compared to roughly 17,500 butterflies). Most of them are cryptic, but some of them are colorful. The beauty of moths lies in their incredible diversity. Don’t try to pin them down! (Unless you are starting a moth collection of course…)

Utethesia bella

Utethesia bella, subfamily Arctiinae, Florida. (Photo by Rachel Diaz-Bastin)

There are more species of moth in the United States than birds in the entire world, and more moths in Texas alone than there are species of mammal in the entire world. Take that, pandas!
In terms of charisma, the pandas of the moth world might be those in the subfamily Arctiinae, commonly known as tiger moths. They are an incredibly diverse group, with 11,000 species found all over the world. Like the beautiful day-flying Bella moth pictured above, their playful, often beautifully geometric patterns seem like something out of a surrealist’s dreamworld. Or a Joan Miro painting.
Chionaema spp.

Chionaema sp., subfamily Arctiinae, Assam. (Photo by Rachel Diaz-Bastin)

Chionaema perornata

Chionaema perornata, subfamily Arctiinae, Assam. (Photo by Rachel Diaz-Bastin)

Chionaema sp. 1

Chionaema sp., subfamily Arctiinae, Assam. (Photo by Rachel Diaz-Bastin)

For potential predators, however, tiger moths look less like a dreamy painting, and more like an unwise snack. Their bright, bold colors – otherwise known as aposematic coloration – advertise that their bodies are infused with poisonous chemicals, such as cardiac glycosides and pyrrolizidine alkaloids, aquired from plants in their environment.
Like other creatures with warning coloration, such as poison dart frogs, coral snakes, Niki Manaj, and flamboyant cuttlefish, tiger moths have a certain dangerous beauty.
Halysidota masoni_2

Halysidota masoni, subfamily Arctiinae, Cuernavaca, Mexico. (Photo by Rachel Diaz-Bastin)

Automolis harteri

Automolis harteri, subfamily Arctiinae, Brazil. (Photo by Rachel Diaz-Bastin)

A particularly lovely species is Anaxita decorata. Commonly known as the decorated beauty, it graces Central American evenings like a flying sunset, with bold silver stripes in a wash of vermillion and gold.
Anaxita decorata

Anaxita decorata, subfamily Arctiinae, Oaxaca, Mexico. (Photo by Rachel Diaz-Bastin)

Anaxita decorata folded wings

Anaxita decorata, subfamily Arctiinae, Oaxaca, Mexico. (Photo by Rachel Diaz-Bastin)

The bright warning colors of tiger moths may serve as protection from daytime predators. But what happens when the lights go out? And bats get the munchies?

Automolis critheis, subfamily Arctiinae, Panama.

Automolis critheis, subfamily Arctiinae, Panama. (Photo by Rachel Diaz-Bastin)

Well, many species of tiger moth have found a way to warn predators at night too – not with sight – but with sound. These species can produce ultrasonic clicks that warn approaching bats that they are distasteful. One species (that is actually tasty), Bertholdia trigona, can produce clicks at such a high rate (up to 4,500 per second), that that it can even jam bat echolocation, resulting in up to tenfold decrease in bat capture efficiency.
Haploa clymene

Haploa clymene, subfamily Arctiinae, Virginia. (Photo by Rachel Diaz-Bastin)

Haploa contigua

Haploa contigua, subfamily Arctiinae, Wisconsin. (Photo by Rachel Diaz-Bastin)

Whether vibrant like tiger moths or so cryptic they blend into the trees, moths truly are among the most intriguing insects. If you want to explore the hidden netherworld of moths for yourself, you are in luck! They are super easy to observe. All you need to do is go outside at dusk or later and set out a white sheet and a light, then sit back and shout, “come to me my moth-y friends muahahahahaha!” Learning to identify them is fascinating, and with National Moth Week coming up in July (yes you read that right, National Moth Week!), anyone can join in the fun.

Halysidota intensa

Halysidota intensa, subfamily Arctiinae, Peru. (Photo by Rachel Diaz-Bastin)

The Art of Discovery

I’ve been hearing lots of jubilation lately for the little fuzzyfaced Olinguito, a new species that was discovered by comparing unusual-looking museum specimens of what was once thought to be a single species, the Olingo. Researchers found that there were smaller specimens among the Olingos that were, in fact, their own species: the Olinguito (or, small Olingo!). Armed with this information, scientists set out into the Cloud Forests of the Northern Andes in search of a live specimen. And they found him! I particularly like this black-and-white shot, he looks like an old movie actor. I could imagine him starring in “From Olinguito to Eternity”:

o-OLINGUITO-900This story is particularly interesting because it demonstrates how archived museum specimens can (and often do), lead to new discoveries. It is also interesting to point out how rare it is to find a new species of mammal, especially compared to other groups of animals. According to Mongabay.com, 41 new species of mammal were discovered in 2008, most of which were rodents (unlike the Olinguito). However, during that same year, an astonishing 8,800 species of insect were discovered! The sheer number of insect species already known to science (over a million), is made even more incredible when you consider that this is less than half of what scientists estimate is still hiding out there among the bramble, leaf litter, and treetops around the world.

Even in Europe, which is mainly known for its jam, the rate of insect discovery is actually still increasing!: http://www.pbs.org/wgbh/nova/nature/new-species-old-world.html

Academy scientists recently came back from the Philippines with a startling diversity of insect specimens, many of which could be new species. Here are some highlights:

Pentatomidae_nymph_PH0009_dorsalCurculionidae_sparkly_lateral_FinalTetrigidae_Lateral_PH0001From Left to Right: “Shield Bug” nymph (family Pentatomidae), A glittery as a disco ball weevil (family Curculionidae, subfamily Brachycerinae). And finally, a buffalo-shaped grasshopper in the family Tetrigidae (genus Hymenotes).

Even more exciting, this small yet fascinating universe awaits discovery for both PhD and amateur entomologists alike. It’s the wild west out here on the frontier, and discovery awaits around every corner!

Here at the Academy of Sciences, our John Wayne of Arachnology is an intrepid spider-wrangling scientist named Charles Griswold. He identifies roughly 10 new species of spider a year, mostly collected from expeditions to South Africa and Madagascar. But in order to publish a description of a new species, he needs some illustrations. This is where I come in.

Often, on a macro level different species of spider can look almost identical. However, because spider pedipalps fit like a lock and key with females of the same species, they are much more useful useful for identification. But, what ARE PEDIPALPS??! Well, in sexually mature male spiders pedipalps are complicated structures that are used to transfer sperm to the female during mating. Pedipalps are actually located near the head. They are the boxing-glove lookin’ thangs! Pow pow pow!

spider palpIllustrations tend to work better for pedipalps than photographs because the translucent/complicated structure is often hard to interpret without highlighting edges artificially. Most pedipalps are quite small, so I use a microscope to draw them. Sometimes this makes me crazy. Here are three pedipalp views from two new species of what are known commonly as “Lace Web Spiders”:

Xevioso sp:

Xevioso n_smallXevioso n.sp Mariepskop_9017130_ventralXevioso n_retrolateral_small

Lamaika sp:

Lamaika bontebok_retrolateral_smallLamaika bontebok_smallLamaika bontebok_prolateral_small

I don’t recall ever seeing “spider junk illustrator” booth at any career fairs, but, life works in mysterious ways, and the natural world can be so mesmerizing that it’s sometimes hard to know where science ends and art begins. It is inspiring to know that there are millions more tiny pieces of art all around us just waiting for scientific discovery!