What all the Buzz is About

 

Blue-banded bees_small_edited

Blue-banded bees (Amegilla cingulata) on a mountain devil (Lambertia formosa).  Illustration by Rachel Diaz-Bastin.

 

Honeybees get a lot of buzz, but what about nature’s bigger buzzers? Those adorably-awkward bumbling bees that spend their days bumping into flowers. They are fuzzy, they are loud, and they are often joyfully colorful. The blue-banded bee from Australia is no exception. In fact, I dare you to find a more magical-looking bee!

blue-banded-bee

Blue-banded bee (Amegilla cingulata). Photo by Srikaanth Sekar.

But there is more to the blue-banded bee than resplendent blue butts.

Blue-banded bees aren’t technically bumblebees (bumblebees belong to the genus Bombus, while blue-banded bees belong to the genus Amegilla), but these furry flyers share some common traits. Notably, both blue-banded bees and bumblebees have the ability to shake pollen out of flowers using a technique called “buzz pollination”.

Buzz pollination (also called sonication), is a feat of strength and endurance that honeybees just can’t match, and it is critical to the 20,000 or so species of plants that depend on it for reproduction.

Flowers that have evolved buzz pollination are unique. They don’t simply put their protein-rich pollen out like cookies on a table for any Tom, Dick, or hairy insect to eat. Making pollen takes time and energy! So these flowers keep it tucked inside tubular stamens that few but the biggest bees are able to access.

To accomplish this a bee will typically grab a stamen with its jaws and vibrate its flight muscles hundreds of times a second. It has to hold on tight though, otherwise the vibrations could send it flying off the flower! Bees experience some totally tubular forces 30 times greater than gravity as they buzz for pollen. That’s near the limit of human endurance, and definitely more than Taylor Swift has ever accomplished, even in her most shakiest offiest of days.

Take a look at this video!

Some plants, like corn, ragweed, and oak trees, cast their pollen to the wind in order to reproduce. Others depend on pollinators like bats, birds, butterflies, and bees to act as their personal pollen distributors. Many flowers use nectar as a lure, and advertise widely to insects and birds to come and eat. But flowers that depend on buzz pollination are looking to attract very specific bees and insects, a relationship that was shaped over the course of evolution. Over time, as their pollen became more difficult to access, natural selection favored bigger bees that could shake their flowers harder.

Many of our important crops evolved in this way, such as cranberries, tomatoes, potatoes, and eggplants.

That’s why big bees are so agriculturally important. Take Australia as an example. While surprisingly not the birthplace of Koala Yummies, Australia also sadly does not have any native bumblebees. For that reason greenhouse-grown tomatoes there are currently hand-pollinated using an “electric bee” (basically a tuning fork that releases pollen via vibrations in a similar way to bees).

In order to combat the extra time and money that hand-pollination requires, some folks in Australia have suggested importing European bumblebees to do the job. But what if these non-native bumblebees escaped their greenhouse enclosures into the surrounding environment?

As this Simpsons clip explains, that could spell ecological disaster.

Not to fear, though, because it turns out there is a better solution right in Australia’s backyard: the native blue-banded bee! Hard to imagine that these Aussie stunners were ever overlooked in the first place, but recent research has shown that they are quite successful in pollinating greenhouse tomatoes, thank you very much. In fact, they may even be better at it than bumblebees!

Bumblebees use their flight muscles to shake pollen out of flower anthers, but it turns out that blue-banded bees use a technique that’s infinitely more hardcore, but familiar to metal fans: headbanging. With a headbanging rate of  350 times per second – which could put even the most die-hard metal fans to shame – blue-banded bees can shake flowers at a greater frequency than bumblebees.

The blue-banded bees’ vibration also makes pollination more efficient, enabling them to spend fewer time on each flower while collecting more pollen.

Did I mention they are cute too?

5627588222_183d919339_b

Female blue-banded bee. Photo by James Niland.

What a win-win! And a reminder of how important jumbo bees are, wherever they are found.

So the next time you hear a big ol’ bee buzzing furiously on a flower, you will know that they aren’t having a panic-attack, they are carrying on a long and glorious tradition of shaking out their pollen snacks, and in the process, ensuring the survival of thousands of plants, many of which we know and love.

 

 

 

 

 

Advertisements

What’s Bugs Got to do With It

Every now and then someone will ask what I do here in the Entomology Department at the California Academy of Sciences. Sometimes I say, “just lookin’ at bugs” or I stare blankly at them, slowly back up, and then run away. But usually I relate it to working in a library, only instead of books the walls are stacked with row upon row, millions upon millions of preserved insects. Researchers from all over the world “check-out” or borrow certain groups of insects, specifically ones in their area of expertise, for identification and study.

But there are some peculiarities to working in an Entomology collection. Translation: things sometimes get a little weird.

On a typical day I might peer into my microscope and see something like this:

Assorted Homops smaller

“Someone identify me!”

These googley-eyed chaps are an assortment of insects in the order Homoptera. The so-called “true-bugs”, insects in this very large order suck up plant sap with a pointy beak-like mouth, and include such well known insects as cicadas and aphids, as well as the ones you see illustrated here, commonly known as leafhoppers and planthoppers.

See this little guy with the bristles on his hind leg?

Cicadellid smaller

That’s a leafhopper in the family Cicadellidae. If you’ve ever walked through grass on a spring day, you’ve likely seen these guys in action, doing what the do best: hoppin’! They are by far the most common Homopteran family I see under my microscope. Not only that, some of them have amazingly beautiful colors.

cicadellidae 1

Rhododendron Leafhopper (Graphocephala fennahi)

 

Cicadellidae 2

Red-banded Leafhopper (Graphocephala coccinea)

cicadellidae 3

Leafhopper (Versigonalia ruficauda)

Several years ago, Entomologists at the Academy began a project to map arthropod diversity on the Island of Madagascar in order to identify conservation hotspots there. Sounds straightforward, but it’s actually quite revolutionary! Until recently, insects were typically overlooked in conservation assessments, despite the fact that they make up the majority of life on the planet.

Biologists in Madagascar collect thousands of specimens that they then ship to us at the Academy. Big bags labeled “Coleoptera”, “Lepidoptera”, “Hymenoptera”, etc. brimming with vials of specimens preserved in alcohol come pouring into our lab. That’s where my job comes in, because I get to wrangle the miscellaneous Homopterans and sort them into smaller and more manageable groups that can then be shipped to taxonomists all over the world.

Here’s a bright pink specimen that belongs in the family Flatidae. They often come in shades of bright pink or yellow and, like their name implies, they are pretty flat.

flatidae micro

Colorful specimen in the Family Flatidae (Homoptera)

Once I pull out all the Flatidae specimens from the samples, I’ll be sending them off on a tropical vacation to Hawaii, where a man who just-so-happens to be a Flatidae specialist lives and works. In time he will hopefully identify them to species!

Here’s a nymph that is possibly in the Hemipteran family Pentatomidae. I’ve never come across anything like it in our Madagascar (or any), sample that I have looked at. It’s possible it could be a new species, but we won’t know until after we send it to a guy at the San Diego Natural History Museum.

mystery hemip vial

With over 1 million described species and counting, we rely on these taxonomists to look over the insects that have been collected and identify them. Maybe they are new species! Or maybe species that we already knew about, but maybe from a new location we didn’t previously know they existed.

Once all of this data is collected for insects (as well as for reptiles, amphibians, plants, and mammals), it can then be used to help conservationists propose locations for protected areas in Madagascar that will preserve the maximum number of species.

This kind of work is valuable, not just for Madagascar, but for the world. Although insects are easily overlooked, the overwhelming vastness of their numbers means that they fill countless niches in the environment and provide important ecological services. Some, like the role bees play in pollination, are well-known. Others, like the fact that we owe the existence of chocolate to a tiny little fly, may not be so well-known. But knowing it is vital, and we still have so much to learn about the biodiversity of the planet, from insects to lichens found up high in redwood trees.

That’s why museums like the Academy of Sciences are so important – not only do they house the records of life on the planet, but they also provide indispensable resources for the taxonomists who are able to tease apart and illuminate the tiny worlds all around us.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tigers in the Night

Like a psychedelic flutter of love, a unicorn picnic, or a traveling band of kitten actors, butterflies spread happiness wherever they go. But as far as insects in the order Lepidoptera go, butterflies are just the tip of a very big iceberg. And perhaps – dare I say it – what’s hidden underneath is even more amazing.

Lepidoperans – also known as butterflies and moths – are an extremely large and diverse group of insects, with nearly 180,000 described species. “Lepis” means “scale” in latin, and “pteron” means “wing”. At the microscopic level, it’s easy to see how they got those fancy names:

Boloria (Clossiana) euphrosyne

Pearl-bordered fritillary butterfly (Boloria euphrosyne), wing close-up. (Photo by Gilles San Martin)

Those scaley-looking things on this butterfly wing are, in fact, scales! More accurately, they are modified hairs, but we call them scales anyway, and lepidopterans are covered in them. These tiny structures overlap slightly like shingles on a very colorful house, and are what give butterflies and moths their diversity of colors and patterns.

sunset moth orange scales

Sunset Moth (Chrysiridia rhipheus), wing scales. (Photo by Macroscopic Solutions)

butterfly scales turquoise

Sunset Moth (Chrysiridia rhipheus), wing scales. (Photo by Macroscopic Solutions)

Many of these colors and patterns are familiar – like the striking orange and black of a monarch, or the iridescent blue of a morpho butterfly lilting through the rainforest. They are familiar because, for the most part, butterflies are up and about when we are.

Although some moths are active during the daytime, the majority of moths are hidden from our normal waking life. But wait until the twillight, or until the stars come out. Check your porch light, or better yet, grab a white sheet, a lamp, and a beer, and you can see the myriad moths that make up the underside of the Lepidoptera iceberg.

Argina argus 2

Mangina argus, subfamily Arctiinae, Nepal. (Photo by Rachel Diaz-Bastin)

Mangina argus, from Southeast Asia, is a particularly lovely member of the nightime set. This species has two noteworthy distinctions: 1) It may possibly have the funniest genus name ever. And 2) It has striking pink and silver markings reminiscent of a butterfly. Except that it isn’t. It’s a moth.

Moths make up roughly 80% of all known Lepidoptera (that’s almost 160,000 known species, compared to roughly 17,500 butterflies). Most of them are cryptic, but some of them are colorful. The beauty of moths lies in their incredible diversity. Don’t try to pin them down! (Unless you are starting a moth collection of course…)

Utethesia bella

Utethesia bella, subfamily Arctiinae, Florida. (Photo by Rachel Diaz-Bastin)

There are more species of moth in the United States than birds in the entire world, and more moths in Texas alone than there are species of mammal in the entire world. Take that, pandas!
In terms of charisma, the pandas of the moth world might be those in the subfamily Arctiinae, commonly known as tiger moths. They are an incredibly diverse group, with 11,000 species found all over the world. Like the beautiful day-flying Bella moth pictured above, their playful, often beautifully geometric patterns seem like something out of a surrealist’s dreamworld. Or a Joan Miro painting.
Chionaema spp.

Chionaema sp., subfamily Arctiinae, Assam. (Photo by Rachel Diaz-Bastin)

Chionaema perornata

Chionaema perornata, subfamily Arctiinae, Assam. (Photo by Rachel Diaz-Bastin)

Chionaema sp. 1

Chionaema sp., subfamily Arctiinae, Assam. (Photo by Rachel Diaz-Bastin)

For potential predators, however, tiger moths look less like a dreamy painting, and more like an unwise snack. Their bright, bold colors – otherwise known as aposematic coloration – advertise that their bodies are infused with poisonous chemicals, such as cardiac glycosides and pyrrolizidine alkaloids, aquired from plants in their environment.
Like other creatures with warning coloration, such as poison dart frogs, coral snakes, Niki Manaj, and flamboyant cuttlefish, tiger moths have a certain dangerous beauty.
Halysidota masoni_2

Halysidota masoni, subfamily Arctiinae, Cuernavaca, Mexico. (Photo by Rachel Diaz-Bastin)

Automolis harteri

Automolis harteri, subfamily Arctiinae, Brazil. (Photo by Rachel Diaz-Bastin)

A particularly lovely species is Anaxita decorata. Commonly known as the decorated beauty, it graces Central American evenings like a flying sunset, with bold silver stripes in a wash of vermillion and gold.
Anaxita decorata

Anaxita decorata, subfamily Arctiinae, Oaxaca, Mexico. (Photo by Rachel Diaz-Bastin)

Anaxita decorata folded wings

Anaxita decorata, subfamily Arctiinae, Oaxaca, Mexico. (Photo by Rachel Diaz-Bastin)

The bright warning colors of tiger moths may serve as protection from daytime predators. But what happens when the lights go out? And bats get the munchies?

Automolis critheis, subfamily Arctiinae, Panama.

Automolis critheis, subfamily Arctiinae, Panama. (Photo by Rachel Diaz-Bastin)

Well, many species of tiger moth have found a way to warn predators at night too – not with sight – but with sound. These species can produce ultrasonic clicks that warn approaching bats that they are distasteful. One species (that is actually tasty), Bertholdia trigona, can produce clicks at such a high rate (up to 4,500 per second), that that it can even jam bat echolocation, resulting in up to tenfold decrease in bat capture efficiency.
Haploa clymene

Haploa clymene, subfamily Arctiinae, Virginia. (Photo by Rachel Diaz-Bastin)

Haploa contigua

Haploa contigua, subfamily Arctiinae, Wisconsin. (Photo by Rachel Diaz-Bastin)

Whether vibrant like tiger moths or so cryptic they blend into the trees, moths truly are among the most intriguing insects. If you want to explore the hidden netherworld of moths for yourself, you are in luck! They are super easy to observe. All you need to do is go outside at dusk or later and set out a white sheet and a light, then sit back and shout, “come to me my moth-y friends muahahahahaha!” Learning to identify them is fascinating, and with National Moth Week coming up in July (yes you read that right, National Moth Week!), anyone can join in the fun.

Halysidota intensa

Halysidota intensa, subfamily Arctiinae, Peru. (Photo by Rachel Diaz-Bastin)